Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
HGG Adv ; : 100303, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702885

RESUMO

Recent collaborative genome wide association studies (GWAS) have identified >200 independent loci contributing to risk for schizophrenia (SCZ). The genes closest to these loci have diverse functions, supporting the potential involvement of multiple relevant biological processes; yet there is no direct evidence that individual variants are functional or directly linked to specific genes. Nevertheless, overlap with certain epigenetic marks suggest that most GWAS-implicated variants are regulatory. Based on the strength of association with SCZ and the presence of regulatory epigenetic marks, we chose one such variant near TSNARE1 and ADGRB1, rs4129585, to test for functional potential and assay differences that may drive the pathogenicity of the risk allele. We observed that the variant-containing sequence drives reporter expression in relevant neuronal populations in zebrafish. Next, we introduced each allele into human induced pluripotent cells and differentiated 4 isogenic clones homozygous for the risk allele and 5 clones homozygous for the non-risk allele into neural precursor cells. Employing RNA-seq, we found that the two alleles yield significant transcriptional differences in the expression of 109 genes at FDR <0.05 and 259 genes at FDR <0.1. We demonstrate that these genes are highly interconnected in pathways enriched for synaptic proteins, axon guidance, and regulation of synapse assembly. Exploration of genes near rs4129585 suggests that this variant does not regulate TSNARE1 transcripts, as previously thought, but may regulate the neighboring ADGRB1, a regulator of synaptogenesis. Our results suggest that rs4129585 is a functional common variant that functions in specific pathways likely involved in SCZ risk.

2.
Cells ; 12(15)2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37566069

RESUMO

The recent advances in creating pluripotent stem cells from somatic cells and differentiating them into a variety of cell types is allowing us to study them without the caveats associated with disease-related changes. We generated induced Pluripotent Stem Cells (iPSCs) from eight Alzheimer's disease (AD) patients and six controls and used lentiviral delivery to differentiate them into excitatory glutamatergic neurons. We then performed RNA sequencing on these neurons and compared the Alzheimer's and control transcriptomes. We found that 621 genes show differences in expression levels at adjusted p < 0.05 between the case and control derived neurons. These genes show significant overlap and directional concordance with genes reported from a single-cell transcriptome study of AD patients; they include five genes implicated in AD from genome-wide association studies and they appear to be part of a larger functional network as indicated by an excess of interactions between them observed in the protein-protein interaction database STRING. Exploratory analysis with Uniform Manifold Approximation and Projection (UMAP) suggests distinct clusters of patients, based on gene expression, who may be clinically different. Our research outcomes will enable the precise identification of distinct biological subtypes among individuals with Alzheimer's disease, facilitating the implementation of tailored precision medicine strategies.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Transcriptoma/genética , Estudo de Associação Genômica Ampla , Neurônios/metabolismo
3.
Mol Psychiatry ; 28(10): 4353-4362, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37479784

RESUMO

The DPYSL2/CRMP2 gene encodes a microtubule-stabilizing protein crucial for neurogenesis and is associated with numerous psychiatric and neurodegenerative disorders including schizophrenia, bipolar disorder, and Alzheimer's disease. DPYSL2 generates multiple RNA and protein isoforms, but few studies have differentiated between them. We previously reported an association of a functional variant in the DPYSL2-B isoform with schizophrenia (SCZ) and demonstrated in HEK293 cells that this variant reduced the length of cellular projections and created transcriptomic changes that captured schizophrenia etiology by disrupting mTOR signaling-mediated regulation. In the present study, we follow up on these results by creating, to our knowledge, the first models of endogenous DPYSL2-B knockout in human induced pluripotent stem cells (iPSCs) and neurons. CRISPR/Cas9-faciliated knockout of DPYSL2-B in iPSCs followed by Ngn2-induced differentiation to glutamatergic neurons showed a reduction in DPYSL2-B/CRMP2-B RNA and protein with no observable impact on DPYSL2-A/CRMP2-A. The average length of dendrites in knockout neurons was reduced up to 58% compared to controls. Transcriptome analysis revealed disruptions in pathways highly relevant to psychiatric disease including mTOR signaling, cytoskeletal dynamics, immune function, calcium signaling, and cholesterol biosynthesis. We also observed a significant enrichment of the differentially expressed genes in SCZ-associated loci from genome-wide association studies (GWAS). Our findings expand our previous results to neuronal cells, clarify the functions of the human DPYSL2-B isoform and confirm its involvement in molecular pathologies shared between many psychiatric diseases.


Assuntos
Células-Tronco Pluripotentes Induzidas , Transtornos do Neurodesenvolvimento , Humanos , Estudo de Associação Genômica Ampla , Células HEK293 , Neurônios , Serina-Treonina Quinases TOR , Isoformas de Proteínas , RNA
4.
J Alzheimers Dis ; 95(1): 53-68, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37522204

RESUMO

BACKGROUND: Despite the burden on patients and caregivers, there are no approved therapies for the neuropsychiatric symptoms of Alzheimer's disease (NPS-AD). This is likely due to an incomplete understanding of the underlying mechanisms. OBJECTIVE: To review the neurobiological mechanisms of NPS-AD, including depression, psychosis, and agitation. METHODS: Understanding that genetic encoding gives rise to the function of neural circuits specific to behavior, we review the genetics and neuroimaging literature to better understand the biological underpinnings of depression, psychosis, and agitation. RESULTS: We found that mechanisms involving monoaminergic biosynthesis and function are likely key elements of NPS-AD and while current treatment approaches are in line with this, the lack of effectiveness may be due to contributions from additional mechanisms including neurodegenerative, vascular, inflammatory, and immunologic pathways. CONCLUSION: Within an anatomic-genetic framework, development of novel effective biological targets may engage targets within these pathways but will require a better understanding of the heterogeneity in NPS-AD.


Assuntos
Doença de Alzheimer , Transtornos Psicóticos , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/terapia , Doença de Alzheimer/diagnóstico , Cuidadores , Ansiedade , Neuroimagem
5.
BMC Genomics ; 24(1): 306, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37286935

RESUMO

To overcome the ethical and technical limitations of in vivo human disease models, the broader scientific community frequently employs model organism-derived cell lines to investigate disease mechanisms, pathways, and therapeutic strategies. Despite the widespread use of certain in vitro models, many still lack contemporary genomic analysis supporting their use as a proxy for the affected human cells and tissues. Consequently, it is imperative to determine how accurately and effectively any proposed biological surrogate may reflect the biological processes it is assumed to model. One such cellular surrogate of human disease is the established mouse neural precursor cell line, SN4741, which has been used to elucidate mechanisms of neurotoxicity in Parkinson disease for over 25 years. Here, we are using a combination of classic and contemporary genomic techniques - karyotyping, RT-qPCR, single cell RNA-seq, bulk RNA-seq, and ATAC-seq - to characterize the transcriptional landscape, chromatin landscape, and genomic architecture of this cell line, and evaluate its suitability as a proxy for midbrain dopaminergic neurons in the study of Parkinson disease. We find that SN4741 cells possess an unstable triploidy and consistently exhibits low expression of dopaminergic neuron markers across assays, even when the cell line is shifted to the non-permissive temperature that drives differentiation. The transcriptional signatures of SN4741 cells suggest that they are maintained in an undifferentiated state at the permissive temperature and differentiate into immature neurons at the non-permissive temperature; however, they may not be dopaminergic neuron precursors, as previously suggested. Additionally, the chromatin landscapes of SN4741 cells, in both the differentiated and undifferentiated states, are not concordant with the open chromatin profiles of ex vivo, mouse E15.5 forebrain- or midbrain-derived dopaminergic neurons. Overall, our data suggest that SN4741 cells may reflect early aspects of neuronal differentiation but are likely not a suitable proxy for dopaminergic neurons as previously thought. The implications of this study extend broadly, illuminating the need for robust biological and genomic rationale underpinning the use of in vitro models of molecular processes.


Assuntos
Neurônios Dopaminérgicos , Doença de Parkinson , Camundongos , Humanos , Animais , Neurônios Dopaminérgicos/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Mesencéfalo/metabolismo , Linhagem Celular , Diferenciação Celular , Cromatina/metabolismo
6.
Res Sq ; 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36824793

RESUMO

To overcome the ethical and technical limitations of in vivo human disease models, the broader scientific community frequently employs model organism-derived cell lines to investigate of disease mechanisms, pathways, and therapeutic strategies. Despite the widespread use of certain in vitro models, many still lack contemporary genomic analysis supporting their use as a proxy for the affected human cells and tissues. Consequently, it is imperative to determine how accurately and effectively any proposed biological surrogate may reflect the biological processes it is assumed to model. One such cellular surrogate of human disease is the established mouse neural precursor cell line, SN4741, which has been used to elucidate mechanisms of neurotoxicity in Parkinson disease for over 25 years. Here, we are using a combination of classic and contemporary genomic techniques - karyotyping, RT-qPCR, single cell RNA-seq, bulk RNA-seq, and ATAC-seq - to characterize the transcriptional landscape, chromatin landscape, and genomic architecture of this cell line, and evaluate its suitability as a proxy for midbrain dopaminergic neurons in the study of Parkinson disease. We find that SN4741 cells possess an unstable triploidy and consistently exhibits low expression of dopaminergic neuron markers across assays, even when the cell line is shifted to the non-permissive temperature that drives differentiation. The transcriptional signatures of SN4741 cells suggest that they are maintained in an undifferentiated state at the permissive temperature and differentiate into immature neurons at the non-permissive temperature; however, they may not be dopaminergic neuron precursors, as previously suggested. Additionally, the chromatin landscapes of SN4741 cells, in both the differentiated and undifferentiated states, are not concordant with the open chromatin profiles of ex vivo , mouse E15.5 forebrain- or midbrain-derived dopaminergic neurons. Overall, our data suggest that SN4741 cells may reflect early aspects of neuronal differentiation but are likely not a suitable a proxy for dopaminergic neurons as previously thought. The implications of this study extend broadly, illuminating the need for robust biological and genomic rationale underpinning the use of in vitro models of molecular processes.

7.
bioRxiv ; 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36747739

RESUMO

To overcome the ethical and technical limitations of in vivo human disease models, the broader scientific community frequently employs model organism-derived cell lines to investigate of disease mechanisms, pathways, and therapeutic strategies. Despite the widespread use of certain in vitro models, many still lack contemporary genomic analysis supporting their use as a proxy for the affected human cells and tissues. Consequently, it is imperative to determine how accurately and effectively any proposed biological surrogate may reflect the biological processes it is assumed to model. One such cellular surrogate of human disease is the established mouse neural precursor cell line, SN4741, which has been used to elucidate mechanisms of neurotoxicity in Parkinson disease for over 25 years. Here, we are using a combination of classic and contemporary genomic techniques - karyotyping, RT-qPCR, single cell RNA-seq, bulk RNA-seq, and ATAC-seq - to characterize the transcriptional landscape, chromatin landscape, and genomic architecture of this cell line, and evaluate its suitability as a proxy for midbrain dopaminergic neurons in the study of Parkinson disease. We find that SN4741 cells possess an unstable triploidy and consistently exhibits low expression of dopaminergic neuron markers across assays, even when the cell line is shifted to the non-permissive temperature that drives differentiation. The transcriptional signatures of SN4741 cells suggest that they are maintained in an undifferentiated state at the permissive temperature and differentiate into immature neurons at the non-permissive temperature; however, they may not be dopaminergic neuron precursors, as previously suggested. Additionally, the chromatin landscapes of SN4741 cells, in both the differentiated and undifferentiated states, are not concordant with the open chromatin profiles of ex vivo , mouse E15.5 forebrain- or midbrain-derived dopaminergic neurons. Overall, our data suggest that SN4741 cells may reflect early aspects of neuronal differentiation but are likely not a suitable a proxy for dopaminergic neurons as previously thought. The implications of this study extend broadly, illuminating the need for robust biological and genomic rationale underpinning the use of in vitro models of molecular processes.

8.
Genes (Basel) ; 14(1)2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36672919

RESUMO

The polygenic nature of schizophrenia (SCZ) implicates many variants in disease development. Rare variants of high penetrance have been shown to contribute to the disease prevalence. Whole-exome sequencing of a large three-generation family with SCZ and bipolar disorder identified a single segregating novel, rare, non-synonymous variant in the gene CASKIN1. The variant D1204N is absent from all databases, and CASKIN1 has a gnomAD missense score Z = 1.79 and pLI = 1, indicating its strong intolerance to variation. We find that introducing variants in the proline-rich region where the D1204N resides results in significant cellular changes in iPSC-derived neurons, consistent with CASKIN1's known functions. We observe significant transcriptomic changes in 368 genes (padj < 0.05) involved in neuronal differentiation and nervous system development. We also observed nominally significant changes in the frequency of action potentials during differentiation, where the speed at which the edited and unedited cells reach the same level of activity differs. Our results suggest that CASKIN1 is an excellent gene candidate for psychosis development with high penetrance in this family.


Assuntos
Transtorno Bipolar , Transtornos Psicóticos , Esquizofrenia , Humanos , Predisposição Genética para Doença , Transtornos Psicóticos/genética , Esquizofrenia/genética , Transtorno Bipolar/genética , Prolina/genética , Proteínas do Tecido Nervoso/genética , Proteínas Adaptadoras de Transdução de Sinal/genética
9.
bioRxiv ; 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38187620

RESUMO

Recent collaborative genome wide association studies (GWAS) have identified >200 independent loci contributing to risk for schizophrenia (SCZ). The genes closest to these loci have diverse functions, supporting the potential involvement of multiple relevant biological processes; yet there is no direct evidence that individual variants are functional or directly linked to specific genes. Nevertheless, overlap with certain epigenetic marks suggest that most GWAS-implicated variants are regulatory. Based on the strength of association with SCZ and the presence of regulatory epigenetic marks, we chose one such variant near TSNARE1 and ADGRB1, rs4129585, to test for functional potential and assay differences that may drive the pathogenicity of the risk allele. We observed that the variant-containing sequence drives reporter expression in relevant neuronal populations in zebrafish. Next, we introduced each allele into human induced pluripotent cells and differentiated 4 isogenic clones homozygous for the risk allele and 5 clones homozygous for the non-risk allele into neural precursor cells. Employing RNA-seq, we found that the two alleles yield significant transcriptional differences in the expression of 109 genes at FDR <0.05 and 259 genes at FDR <0.1. We demonstrate that these genes are highly interconnected in pathways enriched for synaptic proteins, axon guidance, and regulation of synapse assembly. Exploration of genes near rs4129585 suggests that this variant does not regulate TSNARE1 transcripts, as previously thought, but may regulate the neighboring ADGRB1, a regulator of synaptogenesis. Our results suggest that rs4129585 is a functional common variant that functions in specific pathways likely involved in SCZ risk.

10.
Sci Rep ; 12(1): 11928, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831384

RESUMO

Scarless genome editing of induced pluripotent stem cells (iPSCs) is crucial for the precise modeling of genetic disease. Here we present CRISPR Del/Rei, a two-step deletion-reinsertion strategy with high editing efficiency and simple PCR-based screening that generates isogenic clones in ~ 2 months. We apply our strategy to edit iPSCs at 3 loci with only rare off target editing.


Assuntos
Edição de Genes , Células-Tronco Pluripotentes Induzidas , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Genoma Humano , Humanos
11.
Genes (Basel) ; 12(12)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34946799

RESUMO

Schizophrenia is a devastating mental illness with a strong genetic component that is the subject of extensive research. Despite the high heritability, it is well recognized that non-genetic factors such as certain infections, cannabis use, psychosocial stress, childhood adversity, urban environment, and immigrant status also play a role. Whenever genetic and non-genetic factors co-exist, interaction between the two is likely. This means that certain exposures would only be of consequence given a specific genetic makeup. Here, we provide a brief review of studies reporting evidence of such interactions, exploring genes and variants that moderate the effect of the environment to increase risk of developing psychosis. Discovering these interactions is crucial to our understanding of the pathogenesis of complex disorders. It can help in identifying individuals at high risk, in developing individualized treatments and prevention plans, and can influence clinical management.


Assuntos
Esquizofrenia/etiologia , Esquizofrenia/genética , Animais , Interação Gene-Ambiente , Humanos , Transtornos Psicóticos/etiologia , Transtornos Psicóticos/genética , Fatores de Risco
12.
Complex Psychiatry ; 6(3-4): 68-82, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34883504

RESUMO

Schizophrenia (SZ) is a common and debilitating psychiatric disorder with limited effective treatment options. Although highly heritable, risk for this polygenic disorder depends on the complex interplay of hundreds of common and rare variants. Translating the growing list of genetic loci significantly associated with disease into medically actionable information remains an important challenge. Thus, establishing platforms with which to validate the impact of risk variants in cell-type-specific and donor-dependent contexts is critical. Towards this, we selected and characterized a collection of 12 human induced pluripotent stem cell (hiPSC) lines derived from control donors with extremely low and high SZ polygenic risk scores (PRS). These hiPSC lines are publicly available at the California Institute for Regenerative Medicine (CIRM). The suitability of these extreme PRS hiPSCs for CRISPR-based isogenic comparisons of neurons and glia was evaluated across 3 independent laboratories, identifying 9 out of 12 meeting our criteria. We report a standardized resource of publicly available hiPSCs on which we hope to perform genome engineering and generate diverse kinds of functional data, with comparisons across studies facilitated by the use of a common set of genetic backgrounds.

13.
Cells ; 10(7)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209762

RESUMO

The treatment of complex and multifactorial diseases constitutes a big challenge in day-to-day clinical practice. As many parameters influence clinical phenotypes, accurate diagnosis and prompt therapeutic management is often difficult. Significant research and investment focuses on state-of-the-art genomic and metagenomic analyses in the burgeoning field of Precision (or Personalized) Medicine with genome-wide-association-studies (GWAS) helping in this direction by linking patient genotypes at specific polymorphic sites (single-nucleotide polymorphisms, SNPs) to the specific phenotype. The generation of polygenic risk scores (PRSs) is a relatively novel statistical method that associates the collective genotypes at many of a person's SNPs to a trait or disease. As GWAS sample sizes increase, PRSs may become a powerful tool for prevention, early diagnosis and treatment. However, the complexity and multidimensionality of genetic and environmental contributions to phenotypes continue to pose significant challenges for the clinical, broad-scale use of PRSs. To improve the value of PRS measures, we propose a novel pipeline which might better utilize GWAS results and improve the utility of PRS when applied to Alzheimer's Disease (AD), as a paradigm of multifactorial disease with existing large GWAS datasets that have not yet achieved significant clinical impact. We propose a refined approach for the construction of AD PRS improved by (1), taking into consideration the genetic loci where the SNPs are located, (2) evaluating the post-translational impact of SNPs on coding and non-coding regions by focusing on overlap with open chromatin data and SNPs that are expression quantitative trait loci (QTLs), and (3) scoring and annotating the severity of the associated clinical phenotype into the PRS. Open chromatin and eQTL data need to be carefully selected based on tissue/cell type of origin (e.g., brain, excitatory neurons). Applying such filters to traditional PRS on GWAS studies of complex diseases like AD, can produce a set of SNPs weighted according to our algorithm and a more useful PRS. Our proposed methodology may pave the way for new applications of genomic machine and deep learning pipelines to GWAS datasets in an effort to identify novel clinically useful genetic biomarkers for complex diseases like AD.


Assuntos
Doença de Alzheimer/genética , Biomarcadores/metabolismo , Predisposição Genética para Doença , Herança Multifatorial/genética , Humanos , Fatores de Risco
14.
Neuropsychopharmacology ; 46(10): 1788-1801, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34035472

RESUMO

Broad-based cognitive deficits are an enduring and disabling symptom for many patients with severe mental illness, and these impairments are inadequately addressed by current medications. While novel drug targets for schizophrenia and depression have emerged from recent large-scale genome-wide association studies (GWAS) of these psychiatric disorders, GWAS of general cognitive ability can suggest potential targets for nootropic drug repurposing. Here, we (1) meta-analyze results from two recent cognitive GWAS to further enhance power for locus discovery; (2) employ several complementary transcriptomic methods to identify genes in these loci that are credibly associated with cognition; and (3) further annotate the resulting genes using multiple chemoinformatic databases to identify "druggable" targets. Using our meta-analytic data set (N = 373,617), we identified 241 independent cognition-associated loci (29 novel), and 76 genes were identified by 2 or more methods of gene identification. Actin and chromatin binding gene sets were identified as novel pathways that could be targeted via drug repurposing. Leveraging our transcriptomic and chemoinformatic databases, we identified 16 putative genes targeted by existing drugs potentially available for cognitive repurposing.


Assuntos
Nootrópicos , Esquizofrenia , Cognição , Estudo de Associação Genômica Ampla , Humanos , Esquizofrenia/tratamento farmacológico , Esquizofrenia/genética , Transcriptoma
15.
Data Brief ; 35: 106897, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33681435

RESUMO

We generated human excitatory neurons using a protocol for rapid 21-day induction using neurogenin-2 overexpression (Zhang et al., 2013) in a publicly available control iPSC line. We validated the glutamatergic neuronal identity of the neurons by immunofluorescence and transcriptomics. We exposed 6 of the 12 replicate neuron cultures to therapeutic plasma levels of clozapine (300 ng/mL) for the last 3 days of culture, and the remaining 6 to replicates to the clozapine solvent alone (methanol) to be used as controls. We harvested the cultures and extracted total RNA, depleted ribosomal RNA and subjected them to RNA sequencing. Of the 6 control replicates 2 failed RNA quality control, and thus a total of 6 exposed and 4 control cultures were used for further analysis. Here, we provide that raw sequencing data as well as a list of all of the genes and their expression levels resulting from the RNA-sequencing. This dataset can be used as a reference data for future studies that access additional neuronal cell types, clozapine exposure conditions, and other antipsychotic medication. Related Research Article: Das, D., Peng, X., Lam, A.N., Bader, J.S., Avramopoulos, D., 2021. Transcriptome analysis of human induced excitatory neurons supports a strong effect of clozapine on cholesterol biosynthesis. Schizophr Res 228, 324-326. (Das et al., 2021).

16.
Am J Med Genet B Neuropsychiatr Genet ; 186(4): 251-258, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33683021

RESUMO

Variants identified by genome-wide association studies (GWAS) are often expression quantitative trait loci (eQTLs), suggesting they are proxies or are themselves regulatory. Across many data sets, analyses show that variants often affect multiple genes. Lacking data on many tissue types, developmental time points, and homogeneous cell types, the extent of this one-to-many relationship is underestimated. This raises questions on whether a disease eQTL target gene explains the genetic association or is a bystander and puts into question the direction of expression effect of on the risk, since the many variants-regulated genes may have opposing effects, imperfectly balancing each other. We used two brain gene expression data sets (CommonMind and BrainSeq) for mediation analysis of schizophrenia-associated variants. We confirm that eQTL target genes often mediate risk but the direction in which expression affects risk is often different from that in which the risk allele changes expression. Of 38 mediator genes significant in both data sets 33 showed consistent mediation direction (Chi2 test p = 6 × 10-6 ). One might expect that the expression would correlate with the risk allele in the same direction it correlates with the disease. For 15 of these 33 (45%), however, the expression change associated with the risk allele was protective, suggesting the likely presence of other target genes with overriding effects. Our results identify specific risk mediating genes and suggest caution in interpreting the biological consequences of targeted modifications of gene expression, as not all eQTL targets may be relevant to disease while those that are, might have different from expected directions.


Assuntos
Herança Multifatorial/genética , Polimorfismo de Nucleotídeo Único/genética , Esquizofrenia/genética , Alelos , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Análise de Mediação , Locos de Características Quantitativas/genética , Fatores de Risco
17.
Compr Psychiatry ; 107: 152236, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33721583

RESUMO

Schizophrenia (SCZ) is an etiologically heterogeneous disease with genetic and environmental risk factors (e.g., Toxoplasma gondii infection) differing among affected individuals. Distinguishing such risk factors may point to differences in pathophysiological pathways and facilitate the discovery of individualized treatments. Toxoplasma gondii (TOXO) has been implicated in increasing the risk of schizophrenia. To determine whether TOXO-positive individuals with SCZ have a different polygenic risk burden than uninfected people, we applied the SCZ polygenic risk score (SCZ-PRS) derived from the Psychiatric GWAS Consortium separately to the TOXO-positive and TOXO-negative subjects with the diagnosis of SCZ as the outcome variable. The SCZ-PRS does not include variants in the major histocompatibility complex. Of 790 subjects assessed for TOXO, the 662 TOXO-negative subjects (50.8% with SCZ) reached a Bonferroni corrected significant association (p = 0.00017, R2 = 0.023). In contrast, the 128 TOXO-positive individuals (53.1% with SCZ) showed no significant association (p = 0.354) for SCZ-PRS and had a much lower R2 (R2 = 0.007). To account for Type-2 error in the TOXO-positive dataset, we performed a random sampling of the TOXO-negative subpopulation (n = 130, repeated 100 times) to simulate equivalent power between groups: the p-value was <0.05 for SCZ-PRS 55% of the time but was rarely (6% of the time) comparable to the high p-value of the seropositive group at p > 0.354. We found intriguing evidence that the SCZ-PRS predicts SCZ in TOXO-negative subjects, as expected, but not in the TOXO-positive individuals. This result highlights the importance of considering environmental risk factors to distinguish a subgroup with independent or different genetic components involved in the development of SCZ.


Assuntos
Esquizofrenia , Toxoplasma , Toxoplasmose , Humanos , Herança Multifatorial , Fatores de Risco , Esquizofrenia/diagnóstico , Esquizofrenia/genética , Toxoplasma/genética , Toxoplasmose/diagnóstico , Toxoplasmose/genética
18.
Neurobiol Aging ; 101: 85-93, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33592548

RESUMO

Late-life depression (LLD) is associated with an increased risk of all-cause dementia and may involve Alzheimer's disease pathology. Twenty-one LLD patients who met the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, criteria for a current major depressive episode and 21 healthy controls underwent clinical and neuropsychological assessments, magnetic resonance imaging to measure gray matter volumes, and high-resolution positron emission tomography to measure beta-amyloid (Aß) deposition. Clinical and neuropsychological assessments were repeated after 10-12 weeks of Citalopram or Sertraline treatment (LLD patients only). LLD patients did not differ from healthy controls in baseline neuropsychological function, although patients improved in both depressive symptoms and visual-spatial memory during treatment. Greater Aß in the left parietal cortex was observed in LLD patients compared with controls. Greater Aß was correlated with greater depressive symptoms and poorer visual-spatial memory, but not with improvement with treatment. The study of LLD patients with prospective measurements of mood and cognitive responses to antidepressant treatment is an opportunity to understand early neurobiological mechanisms underlying the association between depression and subsequent cognitive decline.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Depressão/diagnóstico por imagem , Depressão/metabolismo , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/metabolismo , Imagem Molecular/métodos , Fatores Etários , Idoso , Doença de Alzheimer/etiologia , Antidepressivos de Segunda Geração/uso terapêutico , Citalopram/uso terapêutico , Demência/etiologia , Depressão/tratamento farmacológico , Depressão/etiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Sertralina/uso terapêutico
19.
Schizophr Res ; 228: 324-326, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33497908

RESUMO

Antipsychotics are known to modulate dopamine and other neurotransmitters which is often thought to be the mechanism underlying their therapeutic effects. Nevertheless, other less studied consequences of antipsychotics on neuronal function may contribute to their efficacy. Revealing the complete picture behind their action is of paramount importance for precision medicine and accurate drug selection. Progress in cell engineering allows the generation of induced pluripotent stem cells (iPSCs) and their differentiation to a variety of neuronal types, providing new tools to study antipsychotics. Here we use excitatory cortical neurons derived from iPSCs to explore their response to therapeutic levels of Clozapine as measured by their transcriptomic output, a proxy for neuronal homeostasis. To our surprise, but in agreement with the results of many investigators studying glial-like cells, Clozapine had a very strong effect on cholesterol metabolism. More than a quarter (12) of all annotated cholesterol genes (46) in the genome were significantly changed at FDR < 0.1, all upregulated. This is a 35-fold enrichment with an adjusted p = 8 × 10-11. Notably no other functional category showed evidence of enrichment. Cholesterol is a major component of the neuronal membrane and myelin but it does not cross the blood brain barrier, it is produced locally mostly by glia but also by neurons. By singling out increased expression of cholesterol metabolism genes as the main response of cortical excitatory neurons to antipsychotics, our work supports the hypothesis that cholesterol metabolism may be a contributing mechanism to the beneficial effects of Clozapine and possibly other antipsychotics.


Assuntos
Antipsicóticos , Clozapina , Esquizofrenia , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Colesterol , Clozapina/farmacologia , Clozapina/uso terapêutico , Perfilação da Expressão Gênica , Humanos , Neurônios , Olanzapina/uso terapêutico , Esquizofrenia/tratamento farmacológico
20.
Adv Exp Med Biol ; 1339: 395-402, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35023131

RESUMO

Precision medicine, also known as personalized medicine, is concerned with finding the right treatment for the right patient at the right time. It is a way of thinking focused on parsing heterogeneity ultimately down to the level of the individual. Its main mission is to identify characteristics of heterogeneous clinical conditions so as to target tailored therapies to individuals. Precision Medicine however is not an agnostic collection of all manner of clinical, genetic and other biologic data in select cohorts. This is an important point. Simply collecting as much information as possible on individuals without applying this way of thinking should not be considered Precision Medicine.


Assuntos
Doença de Alzheimer , Medicina de Precisão , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA